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We study how decoherence rules the quantum-classical transition of the kicked harmonic oscillator. The
system presents classical dynamics that ranges from regular to strong chaotic behavior depending on the
amplitude of the kicks. We show that for regular and mixed classical dynamics, and in the presence of noise,
the distance between the classical and quantum phase space distributions is proportional to a single parameter
��K�eff

2 /4D3/2, which relates the effective Planck constant, �eff, to the kicking strength, K, and the diffusion
constant, D. This relation between classical and quantum distributions is valid when ��1, a case that is always
attainable in the semiclassical regime, independent of the value of the strength of noise given by D. Our results
extend a recent study performed in the chaotic regime.
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I. INTRODUCTION

A fundamental problem that has attracted substantial at-
tention since the beginning of quantum mechanics is the
complete description of the emergence of the classical world
within the quantum theory. In spite of many advances
achieved in the field, a number of questions remain unan-
swered. Within the milestones in this field, we can cite the
understanding that the formalism of phase space distribution
functions is the appropriate framework to study the quantum
to classical transition �1�. In this regard, the Wigner function
�2� has the advantage, among all quantum phase-space dis-
tributions, that it identifies the nonlinearities of the system as
responsible for the separation between the quantum and the
classical evolution. Moreover, while the Wigner distribution
obeys the Liouville equation of the classical distribution for
linear systems, the nonlinearities add terms to this equation
that eventually set the two distributions apart �3� even for
initial states that are classically allowed.

The time for which classical and quantum distributions
start to differ �known as breaking or separation time� can be
very short for classically chaotic systems. This is the conse-
quence of nonlinearities of the system being reached very
quickly due to the exponential stretching of the distributions.
Therefore, the breaking time scales as ln�1/�eff�, where the
effective Planck constant �eff�� /S is the semiclassical pa-
rameter �with S a typical action of the system� �4–10�.

Furthermore, an important and subtle problem is that, due
to its logarithmic behavior, the separation time for macro-
scopic systems ��eff�1� can still be small in comparison to a
typical evolution time allowing quantum effects that are not
observed in the classical world �11�. This paradoxical situa-
tion is explained by the coupling of the system with the
environment leading to the elimination of the quantum sig-
natures providing reconciliation of theory and observation
�12,13�. Furthermore, it is unclear how the effects of the
environment affect the logarithmic law of the breaking time
in systems with a classical chaotic dynamics. More precisely,

the exact relation between the strength of noise and the ef-
fective Planck constant in order to obtain the correct classical
limit is still unknown �14�.

Answers to these problems can be found in a recent work
�15� where the authors studied the effect of a purely diffusive
environment over a specific model given by the kicked har-
monic oscillator �KHO�. In that paper, it is shown that the
differences between the classical and quantum phase evolu-
tion are proportional to a single parameter �=K�eff

2 /4D3/2.
This parameter � combines �eff, the diffusion coefficient D,
and the kicking strength K, which controls the macroscopic-
ity, the noise, and the chaotic behavior, respectively. These
quantum-classical differences were estimated with Dn �n is
the number of kicks�, which is the integral over the whole
phase space of the modulus of the difference between the
quantum and the classical distributions. Thus, the authors
showed that when the classical dynamic is chaotic in the
semiclassical limit, �eff�1, and when ��1, the single pa-
rameter � controls the quantum-classical transition of the
KHO. These results confirm the conjecture presented in Ref.
�16� that, in the presence of noise a single parameter controls
the quantum-classical transition of classically chaotic
systems.

In this paper we analyze the case when the classical dy-
namics of the KHO is regular or mixed. We show that the
separation between the quantum and the classical evolution
can be characterized through the behavior of Dn as a function
of time in the absence of a reservoir. When the initial distri-
bution explores regions of regular classical dynamics, the
behavior of Dn allows the identification of a power law,
1 /�eff

� , for the separation time. However, this scale-law is not
valid when the degree of mixing increases. In the presence of
a purely diffusive reservoir, we show that the quantum-
classical differences measured by Dn also scale with the pa-
rameter � in the semiclassical limit and when ��1. Hence,
the concept of separation time is not meaningful any more
because the quantum and the classical distributions remain
close throughout the evolution. Our result suggests that the
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conjecture introduced in Ref. �16� can be extended indepen-
dently of the underlying classical dynamics.

The paper is organized as follows. Section II is focused on
reviewing the quantum and the classical versions of the KHO
and explaining the formalism for the evolution of the Wigner
function and the classical distribution as a map in phase
space. In Sec. III we introduce our measure of the quantum-
classical differences, Dn, and study its behavior as a function
of time without the presence of a reservoir. We also investi-
gate the scale-law with the effective Planck constant of the
separation time when the initial distribution explores regular
or mixed regions of the phase space. The effects of decoher-
ence over Dn when the KHO is in contact with a purely
diffusive reservoir are studied in Sec. IV. Finally, we include
some final remarks in Sec. V.

II. MODEL: THE KICKED HARMONIC OSCILLATOR

A. The quantum version

The model used in our calculations is KHO, a particle of
mass, m, in a harmonic potential subject to a periodically
applied position-dependent delta pulses. The quantum
Hamiltonian is defined as

Ĥ =
P̂2

2m
+

1

2
m�2Q̂2 + A cos�kQ̂��

n=0

�

	�t − n
� , �1�

where � is the oscillator frequency, A the amplitude of the
kicks, and 
 the interval between two consecutive kicks. The
periodicity of the position dependent kicking potential is set
by k.

The physical realization of this Hamiltonian is within the
context of trapped ions. It was shown in Ref. �17� that it
describes the center-of-mass dynamics of an ion in a one-
dimensional trap submitted to a sequence of standing-wave
laser pulses, off-resonance with a transition between the
electronic ground state and another internal state. The wave
number k in Eq. �1� is the projection along the trap axis of
the corresponding wave vectors with equal modulus �k�� of
two opposite propagating pulses with oblique incidence mea-
sured by an angle �, i.e., k�2�k��cos���.

Working with dimensionless quantities q̂=kQ̂, p̂=kP̂ /m�,
and K=k2A /m�, it is possible to define an effective Planck
constant �eff, so that �q̂ , p̂�=2i�2� i�eff, with �=k
Q0

=k�� /2m� and 
Q0 being the width of the ground state of
the harmonic oscillator. The dimensionless parameter � is
the so-called Lamb-Dicke parameter �18�, which measures
the ratio between the ground state width and the wavelength
�=2� /k �the scale of the nonlinearity of the Hamiltonian�.
In experiments with trapped ions, the classical limit �→0
�and thus �eff�2�2→0� can be approximated simply by
changing the angle � of incidence of the incoming pulses or
by increasing the trap frequency �.

B. The classical version

The classical Hamiltonian is obtained from Eq. �1� by

replacing the quantum operators Q̂ and P̂ by the phase space

variables Q and P, respectively. In an analogous way, we can
define the dimensionless phase space coordinates x��q , p�
��kQ ,kP /m��. Then, the time-dependent classical evolution
can be described as a composition of a discrete map corre-
sponding to the kick, plus a rotation in phase space, xn+1
=R �K�xn�, where xn��qn , pn� are the coordinates before
kick n �where the first kick corresponds to n=0�. The kick
operation K is defined as

qn
+ = qn, pn

+ = pn + K sin�qn� , �2�

and the phase space rotation R is given by

qn+1 = cos��
�qn
+ + sin��
�pn

+,

pn+1 = − sin��
�qn
+ + cos��
�pn

+. �3�

In close relation with Ref. �15�, we have also considered the
case where the interval between kicks 
 and the period of the
harmonic oscillator T=2� /� are related by 
=T /6.

The phase space of the system is unbounded and corre-
sponds to a mixed dynamics exhibiting stable islands sur-
rounded by a stochastic web. The thickness of the web is
controlled by the dimensionless kick amplitude, K=k2A /m�.
Hence, these chaotic regions broaden �shrink� as K increases
�decreases�. In the considered case of 
=T /6, the stochastic
web displays crystal hexagonal symmetry �7,9�. In Fig. 1 we
show the stroboscopic phase space around the origin for dif-
ferent values of K. For K�Kc	1.1547, the origin is an el-
liptic fixed point while for K�Kc the system undergoes a
bifurcation where the origin becomes an hyperbolic fixed
point and two neighbor elliptic fixed points arise. The sepa-
ration between these two elliptic fixed points increases with
K. As we can see in Fig. 1�a�, for K=0.5 the dynamics of the
system around the origin is essentially regular with a series

FIG. 1. Stroboscopic phase space of the KHO for different val-
ues of the kick amplitude K. In �a� K=0.5, �b� K=1.0, �c� K=1.5,
and in �d� K=2.0. The phase space points �q0 , p0�= �0,0�, �0,1.1�,
and �0.7,0�, marked with symbols ���, are the centers of the initial
coherent states used in our numerical simulations.
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of concentric tori around the elliptic fixed point. For K=1
�Fig. 1�b��, some tori were destroyed and tiny chaotic regions
appear �invisible to the eye�. Mixed dynamics start to mani-
fest most appreciably for K=1.5 while for K=2 most of the
area around the origin shows chaotic behavior �see Figs. 1�c�
and 1�d��.

C. The evolution of phase space distributions
without reservoir

We analyze the quantum-classical transition in phase
space comparing the evolution of the Wigner function �2�
and the corresponding classical distribution. The Wigner
function is defined as

W�x� � 
 dy�q + y/2� �̂

4��2�q − y/2
exp�− i
py

2�2� ,

�4�

with �̂ the density operator of the quantum state. This quan-
tum phase space distribution is advantageous, because it is
the only one to yield the correct marginal probabilities, thus
satisfying an important property of classical distributions
�19�. Furthermore, quantum effects are more pronounced as
compared to other bounded distributions. Finally, new meth-
ods have been developed for the direct measurement of the
Wigner function, which are adequate for the description of
evolving systems �20,21�.

Without the action of a reservoir, the unitary evolution of
the Wigner function of the KHO can be written as �5,15�

Wn+1�x� =
 dx�L�xR,x��Wn�x�� , �5�

where Wn+1 and Wn are the Wigner functions immediately
before the kicks n+1 and n, respectively. The integration is
over all the unbounded phase space and

L�xR,x�� � 

−�

� d�

2��2ei/�2�K sin�q��sin���−��pR−p���	�qR − q��

�6�

is the quantum propagator of one kick plus the harmonic
evolution between the consecutive kicks which is given by

xR � �qR�x�,pR�x�� � R−1�x� , �7�

i.e., the phase space coordinates rotated with the inverse
transformation of Eq. �3�. The Liouville evolution of the
classical distribution, Wn

cl�x�, can also be written in the form
of Eq. �5� with the classical propagator

Lcl�xR,x�� � 	�p� − pR + K sin�q���	�qR − q�� . �8�

In the classical limit �→0, the classical propagator is for-
mally recovered from the quantum one �5�. Indeed, in the
semiclassical regime ���1�, the integral in Eq. �6� can be
estimated by employing stationary-phase techniques yielding

L�xR,x�� 	
1

�b�1/3Ai�−
sign�b�
�b�1/3 �p� − pR + K sin�q����

�	�qR − q�� , �9�

where b= ��4K /2�sin�q�� and Ai�x� is the Airy function.

When �→0, we can use Ai�−y /�� /� →
�→0

	�y� to get the clas-
sical Liouville propagator in Eq. �8�. However, no matter
how small we can do the Lamb-Dicke parameter, �, in a
physical realization of the KHO, this will always take a finite
value and then the presence of an Airy function in the quan-
tum propagator will eventually set the Wigner function and
the classical distribution apart.

III. THE QUANTUM-CLASSICAL SEPARATION
WITHOUT RESERVOIR: SCALE-LAW

FOR THE SEPARATION TIME

The Wigner distribution of a linear system �quadratic
Hamiltonian� satisfies the Liouville equation for the classical
phase-space probability distribution. Thus, starting with a
Wigner function of a pure state that corresponds to a classi-
cally allowed probability distribution �the only possibility is
a minimum uncertainty initial Gaussian wave packet �22��, a
linear dynamics evolution will preserve its Gaussian shape.
The initial wave packet will deform and eventually delocal-
ize during the evolution when the system has nonlinearities.
As a consequence, quantum interference effects appear be-
tween different pieces of the wave packet which remain co-
herent throughout the unitary evolution. These quantum in-
terference effects stem from the extra terms that the
nonlinearities of the system add to the Liouville equation in
order to obtain the correct equation of motion of the Wigner
function �3,23�. Similarly, these interferences are originated
by the nonlocal nature of the Wigner propagator �see, for
example, Eq. �6� in comparison with the local nature of the
Liouville propagator of Eq. �8��, that persist even in the
semiclassical regime �see Eq. �9��. Therefore, interference
effects are responsible for the separation of the Wigner func-
tion from the classical distribution and, thus, of the quantum-
classical correspondence breakdown.

The quantum-classical differences start to become impor-
tant when the initial distribution spreads over distances of the
order of the characteristic scale of the nonlinearities of the
system. This argument is used in order to estimate the time
scale for the separation in the case of classically chaotic sys-
tems �11,13,24�. Indeed, as the initial Gaussian Wigner func-
tion is well localized, it will initially evolve following clas-
sical trajectories in phase space. The wave packet will stretch
exponentially fast along the unstable manifold and will also
shrink exponentially fast along the stable one in order to
conserve the phase space volume. This is followed by the
characteristic folding of classical trajectories that forces the
wave packet to develop quantum interference between differ-
ent pieces that are coherently related. As a consequence of
this behavior, a logarithmic scale law with the effective
Planck constant �eff of the separation time in systems with
classical chaotic dynamics is found. For the KHO, the sepa-
ration time ts results
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ts = ns
 	



�
ln�1/�� , �10�

where � is the local expansion coefficient and �eff=2�2. A
detailed estimation of ts can be found in Refs. �7,10� and in
Ref. �9� where is also shown a numerical test that indicates
that this is also the time when quantum and classical expec-
tation values start to differ from each other. The expansion
coefficient � corresponds to the Lyapunov exponent when an
average over initial conditions in the chaotic regions is con-
sidered �10,15�.

Conversely, when the classical dynamics of the system is
essentially regular, the scaling law of the quantum-classical
separation time with �eff has been less studied. The logarith-
mic dependence of ts in the chaotic case is due to the expo-
nential divergence of classical trajectories, but in the inte-
grable case, the divergence is typically polynomial
�13,25,26�. Therefore, following a similar type of argument
as in the chaotic case, the separation time in regular systems
would follow a power law. If the initial distribution explores
regions of essentially regular dynamics in the KHO, we
would have

ts = ns
 	 
/��, �11�

where we do not include the numerical constants. Indications
of the validity of Eq. �11� for K�1 are given in Ref. �7�. In
the following we will show a way to estimate the amount of
quantum effects that lead to the separation between the
Wigner function and the classical distribution and how the
scaling law for the separation time in Eq. �11� manifests in
our formalism.

In Ref. �15�, the time dependent quantity �t=n
�,

Dn �
 dx�Wn�x� − Wn
cl�x�� , �12�

was introduced to quantify the quantum effects that lead to
the separation between the Wigner function, Wn, and the
classical distribution, Wn

cl. Starting with the same initial dis-
tribution, it is expected that during the unitary evolution the
appearance of quantum-classical differences make Dn grow
and eventually saturate around some finite value. This behav-
ior is shown in Figs. 2 and 3 where we have plotted Dn as a
function of the scaled number of kicks �see below� for dif-
ferent values of the semiclassical parameter, �, and the am-
plitude of the kick, K. The initial distribution is always a
coherent state with width 
q�0�=
p�0�=�.

In Fig. 2 the amplitude of the kick is K=0.5. This case
involves regular classical dynamics because the different ini-
tial coherent states considered, during the interval of times
monitored, spread over the regular region around the origin
�see Figs. 1, 4, and 5�. Figure 2�a� corresponds to an initial
coherent state centered at the phase space point �q0, p0�
= �0,1.1�. We can see that, as a result of starting with an
initial wave packet outside the origin, the quantity Dn grows
up to values larger than one for all values of the semiclassi-
cal parameter �. We remark that for each value of �, the
quantity Dn saturates at a different value always larger than
one �not showed in the plot�. That Dn attains values of the

order O�1� clearly indicates the separation between the
Wigner and the classical distributions because a measure of
their differences reaches values of the order of their normal-
ization. However, it is important to note that, independent of
the value of the quantum differences, we choose to define the
separation between the Wigner and classical distributions, it
will be reached at some early time of the evolution indepen-
dently of how small is the semiclassical parameter �. Thus,
the separation time defined in this way should scale as in Eq.
�11�. This is shown in the plots, where a rescaling of the
number of kicks by a function of the form n*���=�−� allows
the approximately collapse of all the curves. The difference
between the values �=0.4 and �=1.8 in Figs. 2�a� and 2�b�,
respectively, come from the distinct dynamical evolution de-

FIG. 2. Separation Dn between quantum and classical distribu-
tion as a function of the number of kicks for K=0.5. The full lines
join all the values of Dn calculated for the same value of the Lamb-
Dicke parameter �. In �a� the initial distribution is a coherent state
centered at the phase space point �q0, p0�= �0,1.1� and the curves
are for �=0.5, 0.25, 0.125, 0.0625, and 0.03125. In �b� the initial
coherent state is centered at the origin and the curves are for �
=0.5, 0.25, 0.125, and 0.0625. The number of kicks, n, are rescaled
by a function n*���=�−�, where we optimize the values of � in
order to obtain the best collapsing of all the curves. The insets show
the curves without the rescaling over the time n. The curves in both
insets corresponds to decreasing values of � from left to right.
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veloped from the initial wave packets. In the first case, the
initial wave packet is centered outside the origin and the
distribution move around a torus and it is stretching around
it. Conversely, in the case of Fig. 2�b� the center of the wave
packet is at rest because the origin is a fixed point of the
classical map. We have found �=0.75 when the initial dis-
tribution is centered at �q0 , p0�= �0.7,0�. This case is similar
to Fig. 2�a� so we do not show it here. Hence, we see that the
value of � in the separation time ns���	�−� will depend on
the local dynamics explored by the initial distribution. This is
similar to what happens to the separation time, ns���
	�1/��ln�1/��, in the chaotic regime where the value of �
reflects the character of the local dynamics explored by the
initial distribution.

In Fig. 2�b� we show the case when the initial coherent
state is centered at the origin of phase space when K=0.5. Dn
grows up to values around 0.25 and then saturates for all
semiclassical parameters �. In this case, Dn grow less than
when the initial coherent state is outside the origin because
now the quantum and classical distributions remain well lo-
calized for very long times and, thus, the quantum-classical
differences are less pronounced �Fig. 5�. Nevertheless, these

differences do not decrease for small values of � showing
that the separation between classical and quantum evolution
occurs in the semiclassical regime. The fluctuations observed
in Figs. 2�a� and 2�b� have a period of n	6 kicks, i.e., ap-
proximately the period of the harmonic evolution T=6
. This
is the time that most parts of the quantum and classical dis-
tribution take to complete a spin along the elliptical structure
of phase space around the origin for K=0.5 �see Fig. 1�.
Furthermore, it is interested to compare in Figs. 4 and 5 the
quantum-classical differences that lead to the separation be-
tween the quantum and the classical evolution when the am-
plitude of the kick is K=0.5. Indeed, when the initial coher-
ent state is centered outside the origin, the quantum and
classical distributions spread out and, as a consequence, the
Wigner function develops a quantum interference pattern
throughout the evolution. This clearly indicates its separation
from the classical distribution �see Fig. 4�. When the initial
coherent state is centered at the origin of phase space, which
is an elliptical fixed point for K=0.5, the quantum and the
classical distributions remain well localized for very long
times �Fig. 5�. In this case, the classical distribution develops
the typical classical structure of “whorls” associated with an
elliptic fixed point �5,21�. It is evident from Figs. 4 and 5 that
the quantum evolution smoothes out this detail of the classi-
cal distribution and this is the origin of the quantum-classical
differences that lead to the separation.

Figure 3 shows the case when the kicking amplitude is
K=1. In this situation, all the initial distributions considered
explore the region around the phase space origin that is
spread of tiny chaotic regions. It is noteworthy that in this
case the collapsing of all the curves does not work well,
indicating the departure of the separation time from the
power law �Eq. �11�� when the degree of mixing in the clas-
sical dynamics grows. We stress that when K=1.5, which is a
case of a great degree of mixing in the classical dynamics, it
is not possible to rescale the number of kicks by a function
of the form n*���=�−� in order to obtain an approximately
collapse of all the curves Dn versus n.

IV. DECOHERENCE: THE EFFECT
OF A DIFFUSIVE ENVIRONMENT

In this section we study how the decoherence affects the
quantum-classical differences given by the quantity Dn,
when the initial distribution explores phase space regions of
regular or mixed classical dynamics. Our approach is in line
with the one developed in Ref. �15�, where the case of cha-
otic dynamics was studied. Therefore, we also coupled the
KHO to a thermal reservoir with average population n̄, in the
Markovian and weak coupling limit and considering the
purely diffusive regime �the high temperature regime n̄→�
together with �→0 but when n̄� is constant, where � is the
dissipation rate�. In this limit, the action of the reservoir over
the Wigner function is described by the Fokker-Planck equa-
tion,

� �W

�t
�

reservoir
= �̃� �2W

�q2 +
�2W

�p2 � , �13�

with �̃� n̄��2. For the complete evolution we have to add to
the right-hand side �RHS� of Eq. �13� the unitary evolution

FIG. 3. Same as Fig. 2 but for K=1.0. In �a� the initial coherent
state centered at �q0, p0�= �0,1.1� and in �b� �q0, p0�= �0.7,0�. The
different curves in each plot correspond to �=0.5, 0.25, 0.125,
0.0625, and 0.03125. The number of kicks, n, is rescaled by a
function n*���=�−� where we optimize the values of � in order to
obtain the best collapsing of all the curves.
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given by the Hamiltonian in Eq. �1�. The action of a pure
diffusive reservoir over a classical distribution is also de-

scribed by Eq. �13� if we identify �̃ with the classical diffu-
sion constant. In this case, we must add to the RHS of Eq.
�13� the corresponding Liouville term of the classical dy-
namics to obtain the complete evolution.

Our findings on the behavior of the quantity Dn in the
presence of decoherence are a consequence of the effects of
the reservoir over the one kick propagator of the Wigner
function that brings it close to the classical propagator of one
kick. Hence, we first summarize the steps in Ref. �15� that
allow us to write the one kick propagator of the Wigner
function as a function of the one kick propagator of the clas-
sical distribution under the action of a purely diffusive res-
ervoir and in the semiclassical regime ���1�.

The solution of the differential equations for the evolu-
tions of both, the classical and the quantum distributions, in
the interval of time between two consecutive kicks, and in
the presence of the purely diffusive reservoir, can be written
as in Eq. �5� where we have to replace the one kick propa-
gator L�x̄ ,x�� of Eqs. �6� and �8� by the smoothed one,

L̃�xR,x�� � 
 dx̄

4�D
L�x̄,x��exp�−

�x̄ − xR�2

4D
� . �14�

Here, D= �̃
 is the diffusion constant between two consecu-
tive kicks, and xR is the result of the harmonic evolution
given in Eq. �7�. Then, the classical smoothed propagator for
the classical distribution function is

L̃cl�xR,x�� =
e−�x2+y2�

4�D
, �15�

where y= �p�− pR+K sin q�� /2�D and x= �q�−qR� /2�D. In
the same way, we performed the integration in Eq. �14� over
the propagator in Eq. �6� to obtain the smoothed quantum
propagator:

L̃�xR,x�� � 

−�

+� d�

2��2e−D�2/�4
ei/�2�K sin�q��sin���−��pR−p���

�	�qR − q�� . �16�

The presence of the Gaussian factor exp�−D�2 /�4� in the
integrand allows us to obtain an approximation in terms of
the classical smoothed propagator given by Eq. �15�. Indeed,
when the width of this Gaussian is small, �2 /�D�1, the ��
that effectively contribute to the integration are those close to
the origin. Therefore, we can use sin���	�−�3 /6 in the
phase of the integrand. Moreover, if �=K�4 /D3/2�1, the
term with �3 in the phase is small, so we can also approxi-
mate ei��+	�	ei�+ i	ei� and then the �-integration can be per-
formed. Thus, we obtain the following approximation to the
smoothed quantum propagator

L̃�xR,x�� 	 L̃cl�xR,x���1 + � sin�q��f�y�� , �17�

where f�y�=1/4�y−2y3 /3�. Since �f�y�exp�−y2���0.081,
Eq. �17� is valid under the less restrictive condition ��1. It
is important to note that the smoothed quantum propagator
�Eq. �17�� is obtained without any assumption of the under-
lying classical dynamics of the system. The only conditions
that have to be fulfilled are: �i� D��4 and �ii� D� �K�4�2/3.

FIG. 4. �Color online� Density plots of the Wigner �right� and
classical distributions �left� that result from the evolution with the
KHO Hamiltonian with the kick amplitude K=0.5 from an initial
coherent state centered in the phase space point �q0 , p0�= �0.0,1.1�
and with a width 
q�0�=
p�0�=�=0.25. In �a� and �b� immedi-
ately before the kick n=8 and in �c� and �d� immediately before the
kick n=18.

FIG. 5. �Color online� Density plots of the Wigner �right� and
classical distributions �left� that result from the evolution with the
KHO Hamiltonian with the kick amplitude K=0.5 from an initial
coherent state centered at the origin of phase space and with a width

q�0�=
p�0�=�=0.25. In �a� and �b� immediately before the kick
n=60 and in �c� and �d� immediately before the kick n=300.
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These two conditions can be cast in D� �K�4�2/3��4, which
is always attainable in the semiclassical regime ���1�, in-
dependent of the value of D.

The approximation of the quantum propagator �Eq. �17��
allows us to write the Wigner function immediately before
the kick n as

W̃n�x� = W̃n
cl�x� + ��

j=0

n

G̃j�x� + O��2� , �18�

where the tilde indicates the action of the purely diffusive
reservoir and we define the phase space function,

G̃j�x� =
 dxnL̃cl�xR,xn�

]

�
 dx j sin�qj�f�yj�L̃cl�x j
R,x j−1�

]

�
 dx0L̃cl�x1
R,x0�W0�x0� . �19�

Equation �18� is obtained by iterating the evolution given by
Eq. �5� with the smoothed Wigner propagator in Eq. �17�
from the initial condition W0�x0�, and keeping only terms of
first order in �. Hence, when ��1, for the separation be-
tween the classical and quantum distributions, we obtain

Dn 	 �
 dx��
j=0

n

G̃j�x�� . �20�

The scaling law proportional to �, obtained in Eq. �20�, is
confirmed in Fig. 6 where the exact numerical calculation of
Dn /� as a function of the number of kicks n for K=0.5 and

K=1.5 and a wide range of values of � and D are displayed.
It is noticed that for values of � which are order of magni-
tude different, all the curves Dn /� versus n fit in the same
scale. So, independent of the value of D, in the semiclassical
limit we have D� �K�4�2/3��4, and thus the separation be-
tween the quantum and the classical distributions decreases
with �4, becoming arbitrarily small. The curves in Fig. 6
were generated for an initial coherent state whose Gaussian
Wigner function, W0�x0�, is centered in the phase space
point, x0= �0,1.1� �Fig. 1�. However we get similar results
when W0�x0� is centered at x0= �0.7,0�. It is worth remem-
bering that the initial distributions considered explore re-
gions of phase space with essentially regular classical dy-
namics when K=0.5, while for K=1.5 these regions
correspond to a mixed classical dynamics. We also obtained
similar results when we considered the case with K=1.

The range of values of � for which the scaling law in Eq.
�20� works is shown in Fig. 7 where we plot the first peak of
Dn, corresponds to the maximum separation between the
classical and the quantum distributions, as a function of �.
We clearly see that the proportionality of Dn with � is, in
general, valid for ��1 with a slight dependence with the
position in phase space of the initial distribution �comparing
plot �a� and �b��. We can also observe that when the phase
space regions explored by the initial distribution are regular
or mixed, the proportionality is valid up to values Dn�1,
but, if the regions explored are essentially chaotic, the pro-
portionality with � is valid up to Dn	1 �see inset of Fig. 7�.

Also, it is interesting to compare the behavior of the time
position of the first peak of Dn as a function of � of our
curves with its behavior when K=2 found in Ref. �15�. In
that case the initial distribution was centered at the origin of
phase space, that for K=2 it is an hyperbolic fixed point
surrounded by a chaotic region �Fig. 1�d��. The time position
of the peak occurred approximately for npeak���
	�1/��ln�1/��, where � is the expansion eigenvalue of the
linear map at the origin. However, in our case the time po-
sition of the first peak of Dn is almost the same for all values
of �. We need to realize that the first peak of Dn signals the

FIG. 6. Renormalized distances between quantum and classical distributions, with diffusion. All the curves were generated with the initial
coherent state centered in the phase-space point �q0 , p0�= �0,1.1� �see Fig. 1� with the kick amplitude K=0.5 in �a� and K=1.5 in �b�. The
eleven different curves correspond to ��K�4 /D3/2=6.2�10−2 ,4.3�10−2 ,1.5�10−2 ,1.1�10−2 ,7.6�10−3 ,3.9�10−3 ,1.4�10−3 ,6.8
�10−4 ,4.8�10−4 ,2.4�10−4 ,4.3�10−5 in �a� and �=6.5�10−2 ,4.5�10−2 ,3.3�10−2 ,2.3�10−2 ,1.2�10−2 ,4.1�10−3 ,2.1�10−3 ,1.4
�10−3 ,7.2�10−4 ,1.3�10−4 ,4.5�10−5 in �b�, where we used the values of diffusion constant D=0.1, 0.05, 0.01, 0.005, 0.001, 0.0005 and
the Lamb-Dicke parameter �=0.25, 0.125, 0.0625, 0.03125.
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moment when the decoherence effects start to dominate, re-
straining the separation of the classical and quantum distri-
butions produced by the presence of nonlinearities in the
system. When the underlying classical dynamics are chaotic,
these nonlinearities are reached in a very short time so the
diffusion dominates when these nonlinearities have already
been reached. This is reflected in the behavior of the position
of the peak, which is a memory of the behavior of the sepa-
ration time Eq. �10� without the action of a reservoir. Con-
versely, when the underlying classical dynamics are regular
or mixed, the time to reach the nonlinearities is very slow so
almost immediately the diffusion washed out any memory
�in the position of peak� of the separation time in Eq. �11�.

Our exact numerical simulations together with those in
Ref. �15� confirm the validity of the scale-law obtained in
Eq. �20� that rules the quantum to classical transition of the
KHO in the semiclassical regime and in the presence of de-
coherence, independent of the underlying classical behavior.
Furthermore, the exact numerical calculations suggest that
the approximation in Eq. �18� that leads to Eq. �20� must be
correct. Therefore, the same scale-law proportional to � is
valid for the mean values of any smooth observables
throughout the evolution of the system. Indeed, the mean

value of an observable Ô in a state represented by the Wigner
function W�x� is given by

�Ô� =
 dxO�x�W�x� , �21�

where O�x� is the Weyl symbol of Ô obtained through the

Weyl transform in Eq. �4� replacing �̂ /4��2→ Ô �3�. The
classical mean value is obtained in the same way, substitut-
ing O�x� by the classical function Ocl�x� and W�x� by the
classical distribution Wcl�x�. So, for every smooth operator in
the semiclassical regime, we can take O�x�	Ocl�x� �26� and

in the presence of decoherence, we use the result in Eq. �18�
to get

�Ô�n − �Ô�n
cl = �
 dxOn

cl�x��
j=0

n

G̃j�x� + O��2� . �22�

V. FINAL REMARKS

We have studied the effect of decoherence in the
quantum-classical transition of the KHO when the classical
dynamics is regular or mixed �with small regions of chaotic
behavior�. Our approach was based on the behavior of the
distance Dn �Eq. �12�� as a function of time. We have shown
that, without the presence of a reservoir, Dn clearly indicates
that the quantum unitary evolution separates from the classi-
cal evolution because it reaches values that do not decrease
in the classical limit. When the initial distribution explores
regions of regular classical dynamics, the separation time ts
scales as a power law with the effective Planck constant, that
is, ts	
 /�eff

� . We have observed that when the degree of
mixing increases, this power-law is no longer valid.

When the system is in contact with a purely diffusive
reservoir, we have extended the results of Ref. �15� for regu-
lar and mixed classical dynamics showing that also in these
regimes Dn is proportional to �=K�eff

2 /4D3/2 when ��1.
This implies that in the semiclassical regime ��eff�1� and,
independent of the values of the diffusion constant D or the
classical dynamics explored by the initial distribution, the
quantum-classical difference Dn goes to zero as �eff

2 . The
conditions for the proportionality between Dn and � can be
condensed in the inequality D� �K�eff

2 �2/3��eff
2 . This is the

relation of the strength of noise and the semiclassical param-
eter for the KHO in order to obtain the classical limit for all
the regimes of its underlying classical dynamics correctly.
We would like to remark that because of the smallness of Dn,
in the semiclassical regime, the concept of separation time is
no longer meaningful.

FIG. 7. The maximum distance between quantum and classical distributions given by the value of the first peak of Dn at n=npeak as a
function of �. The initial distribution is centered at x0= �0,1.1� in �a� and x0= �0.7,0� in �b�. The marks ��� are for K=0.5, the ��� for
K=1.0, and ��� for K=1.5. The region of linear behavior of Dnpeak

as a function of � is highlighted by the dashed line with a unit value of
the slope. The inset is borrowed from Ref. �15� when the initial distribution explores a chaotic region in phase space of the classic KHO. We
use the value of the Lamb-Dicke parameters �=0.5,0.25,0.125,0.0625,0.03125, and the diffusion constant D=5�10−6 ,1�10−5 ,5
�10−5 ,1�10−4 ,5�10−4 ,1�10−3 ,5�10−3 ,1�10−2 ,5�10−2 ,10−1.
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Finally, our results and those from Ref. �15� indicate that
the conjecture presented in Ref. �16� may be extended, in
general, for all types of classical dynamics. However, it
seems that � should enter a parameter that controls the de-
gree of mixing of the considered system and not directly the
Lyapunov coefficient that characterizes the exponential di-
vergence of trajectories in fully chaotic classical systems.

Comparing our result for the KHO and the one in Ref.
�16� for the noisy cat map, we could see that the power of the
coupling to the environment D entering in the definition of
parameter � depends on the particular system considered. It

will be the aim of future works to test the genericity of our
findings in other systems.
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